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Quinones are ubiquitous to living systems, providing important
cofactors for electron transfer in photosynthesis and respiration.
In photosynthesis, two quinones termegd®d Q@ act in concert
to enable efficient charge separation to take pfed®, and Q are
often identical quinones: plastoquinone in higher plants and
ubiquinone in bacterial systemdifferences in the nature of the
hydrogen-bonding interactions of both quinones have been sug-
gested to result in the differing functions observed; that is, specific
hydrogen bonds to nearby amino acid residues are able to tailor
the quinone to perform a specific functibhin particular, electron-  Figure 1. ORTEP drawing of-c—Q.
transfer reactions are known to be regulated through noncovalentbetween the quinone oxygen atom and the amide hydrogen is 2.17
interactions such as hydrogen bonding which plays an important A and the G-O bond lengths of two carbonyl groups of quinone
role in biological electron-transfer systefitS.However, there has  are eventually the same (1.22 A, see S7). These results indicate
been no report on dynamics of the hydrogen-bond formation of that there is no hydrogen bonding between the quinone oxygen
semiquinone radical anions upon electron-transfer reactions of atom and the amide hydrogen in the ground state.
quinones. The cyclic voltammograms dfc—Q exhibited two reversible

We report herein the first successful detection of hydrogen- one-electron redox couples of two redox active moieties at 0.39
bonding dynamics in arintramolecular photoinduced electron-  and—0.16 V (vs SCE) in MeCN. The former one-electron redox
transfer reaction of a donemcceptor-linked system. A newly  potential corresponds to the FcfFeouple that agrees with the one-
designed ferrocerequinone dyad with an amide spadee(-Q) is electron oxidation potential of ferrocerg®(, vs SCE= 0.37 V)10
employed to examine formation of the hydrogen bonding in the The latter potential thereby corresponds to the Quple!! The
one-electron reduced form (Q and the dynamics in the photo-  one-electron reduction potential of @%eqvs SCE= —0.16 V) of
induced electron-transfer reaction from the ferrocene to the quinoneFc—Q is significantly shifted to a positive direction as compared
moiety. to the value ofFc—(Me)Q in which the amide proton is replaced

The preparation oFc—Q dyad andFc—(Me)Q dyad in which by methyl group €0.40 V). Such a large positive shift &;eq of
the N—H group is replaced by NMe was carried out as shownin  Q thereby indicates that*Qis stabilized by the hydrogen bonding
Scheme 1 (see Supporting Information,-84). Single crystals of formed with the amide proton of the spacer.

To examine the hydrogen bonding of Gn the dyad, the radical

Scheme 1

Me Me anion of quinone moiety dfc—Q (Fc—Q*~) was produced by the
& )N COOH  \ methyimolpholine &7 )—NHCO electron-transfer reduction &c—Q by semiquinone radical anion.
% + 7 choro4 6-dmethoxy. & Me An electron transfer from the semiquinone radical anion to Q occurs,
< 1,3.5-triazine 192 %) to produceFc—Q*~. The absorption spectrum of hydrogen-bonded
e Fc—Q*~ has absorption maxima at 450 and 550 nm, whereas Q
with no hydrogen bonding oFc—(Me)Q*~ has the absorption
Y NHCO‘g BBy Oz CHeCl, NHCO maximum only at 450 nm (S8). The ESR spectrumFof-Q*~
= Me = © (g = 2.0055) in MeCN at 298 K exhibits the hyperfine splitting
Fc-Q (15 %) (hfc) determined asy = 4.60 (1H), 2.05 (1H), and 1.75 G (1H)

. . ) (S9). The observed hfc values can be well reproduced by the density
Fc—Q were obtained by vapor diffusion of ether into an MeCN 1 tion (DFT) calculation of PRQ™ in which Fc is omitted at
solution of Fc=Q. The crystallographic data are summarized in e g| yp/3-21G level which predicts the hfc values as 4.85 (1H),

Supporting Information (Table, S5), and the ORTEP drawing is 5 48 (1H), and 1.12 G (1H} The optimized geometry consistent
shown in Figure 1. The distance between ferrocene and quinoney i, the experimentally determined hfc values indicates that the

(edge-to-edge) is determined as 8.05 A. The closest distanceO_H distance between the quinone oxygen atom of &hd the

*To whom correspondence should be addressed. E-mail: fukuzumi@ ?mlde hydrogen is 1.61 A which is m“f:h shorter than the distance
ap.chem.eng.osaka-u.ac.jp; imahori@mee3.moleng.kyoto-u.ac.jp (present ad-in the X-ray structure of neutr&c—Q (Figure 1). The G-O bond

Qgggl:(a'%?ﬁse%”i{‘frsny); ito@tagen.tohoku.ac.jp. length of the hydrogen-bonded carbonyl group (1.32 A) becomes
#Tohoku University. longer than the bond length of the other carbonyl group (1.30 A)
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Figure 2. (a) Time-resolved absorption spectrumFaf—Q dyad (5.0x
1074 M) in argon-saturated PhCN excited at 388 nm (delay time: 1 ns) at
298 K. The time profile at (b) 450 nm-band and (c) at 580 nm-band.

due to the weakening of the-€© bond by the hydrogen bonding
with the amide proton. To confirm the hydrogen bond formation
upon the electron-transfer reduction &t—Q, photoinduced
electron transfer from the Fc to the Q moiety is examined using a
laser flash photolysis technique (vide infra).

Photoexcitation of the Q moiety iRc—Q in deaerated PhCN
with 388 nm femtosecond (150 fs width) laser light results in the

appearance of a new absorption band at 580 nm as shown in Figure

Scheme 2
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